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ABSTRACT. Using methods of differential geometry, a discrete analog of the Yang-Mills
equations in Minkowski space is constructed. The gauge transformation law in a discrete
formulation is given and gauge invariance of discrete Yang-Mills equations is studied.

1. Introduction.

The main goal of this paper is to construct a gauge-invariant discrete model of
Yang-Mills equations in Minkowski space. Based on the formalism described in [1] by
Dezin, we consider some intrinsically defined geometric discrete model. A simple two-
dimensional discrete model of the classical Yang-Mills equations has been constructed
and studied in [2]. However, this discrete model is the lacking of gauge invariance. Some
another approaches are proposed in [5, 6]. In [5] a gauge-invariant discrete analog of
the Yang-Mills equations is constructed in Euclidean space R"”. We try to define what
gauge invariance is in the case of discrete models. The method described in [6] is appli-
cable for obtaining a discrete model of the Yang-Mills equations on the 2-dimensional
sphere.

In this paper we concerned with two problems related to the discretization in Minkow-
ski space. First we must determine a combinatorial pseudo-Euclidean space and define
a discrete analog of the Lorentz metric. Note that in this case to define discrete analogs
of the differential and the exterior multiplication can be used the results of [5]. As
in the continual case these operations do not depend on a metric. Secondly, given a
discrete analog of the connection 1-form, a discrete covariant derivative must be defined.
We always try to be as ¢lose to continual Yang-Mills theory as possible. Nevertheless,
gauge invariance of the discrete Yang-Mills equations is obtained under some additional
conditions (Theorem 1).

It is known that Yang-Mills theory can be regarded as a non-linear generalization of
Hodge theory in the 4-dimensional case (see [3]). In Section 5, we construct a formally
adjoint operator of the discrete covariant differential. Then we show how to obtain a
discrete analog of the generalized Laplace type operator with respect to the Lorentz
metric.

2. Preliminaries.
Let M* = R3 be the Minkowski space-time manifold. Suppose that M* has the
Lorentz metric g,, = diag(— + ++). Consider the trivial bundle P = M* x SU(2).
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Let T*P be the cotangent bundle of P . It is known (see [4]) that a connection can be
shown to arise from a certain 1-form w belonging to T*P, where w is required to have
values in the Lie algebra su(2). Let (z,g), z € M*, g € SU(2), be local coordinates
of the bundle P. Then w is given by

w=g"tdg+ g 'Ag, (1)
where
A=) A%(z)Aadz”. (2)
a,p -

Here we take as a basis for su(2) the set {A\y = 42,0 = 1,2,3}, where o, are the
standard Pauli matrices. The su(2)-valued 1-form A is called the connection form and
the functions Af(z), connections.

Let the coordinates of P change (locally) from (z,g) to (z’,g’). Let us only make
a change of fibre coordinates, i.e. z =2z' and ¢’ is given by

g = hg, h € SU(2). (3)
So invariance of w means that
g7'dg+g " Ag = (¢") " dg' + (¢") ' A'g".

Under the change of coordinates (3) the invariant 1-form w induces a certain trans-
formation law for the connection form A. Taking into account the fact that dg’ =
dhg + hdg and dhh~! + hdh™! =0, we obtain

A' = hdh™' + hAR7L, (4)

In Yang-Mills theory this transformation law is called the gauge transformation law.
The curvature 2-form F' can be defined as follows

F=dA+AAA. (5)

We have the tensorial law F' = hFh~! for the change of F under the gauge transfor-
mation (4).
Define the covariant exterior differential operator d4 by

daQ=dQ+AAQ+ (-1)"H1QA A4, G

where  is a su(2)-valued r-form.
Consider the equations
daF =0, (7

dA*F=0, (8)

where * is the metric adjoint operation (Hodge star). Equations (7), (8) are called the
Yang-Mills equations [3]. Equation (7) is known as the Bianchi identity.
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Let ®,¥ be su(2)-valued r-forms on M*. The ”inner product” can be defined as
(@, %) = —tr / ® A+, ©)
M4

where tr is the trace operator. Note that M* is non-compact. So all forms referring
to the inner product have compact support by assumption.
Then the adjoint operator of d4 can be expressed in the form

6.4 = *_ldA*) -
where x~! is the inverse operation to x (*x~! = 1). Combining the latter with
Equation (8) we get

daF =0.

By virtue of (7), this equation is similar to the criterion for a scalar differential form to
be harmonic [8]. Thus, if F is a solution of the Yang-Mills equations, then the following
Laplace-Beltrami type equation

(dada +04da)F =0 (10)

holds immediately on M* with respect to the Lorentz metric.
3. Combinatorial model of Minkowski space.

Following [1], let the tensor product C(4) = C® C ® C ® C of a 1-dimensional
complex be a combinatorial model of Euclidean space R*. The 1-dimensional complex
C is defined in the following way. Let C° denotes the real linear space of 0-dimensional
chains generated by basis elements z, (points), K € Z. It is convenient to introduce
the shift operators 7,0 in the set of indices by

TK=K+1, ck=Kk-—1.

We denote the open interval (z,,zrc) by es. One can regard the set {e.} as a
set of basis elements of the real linear space C'. Suppose that C! is the space of
1-dimensional chains. Then the 1-dimensional complex (combinatorial real line) is the
direct sum of the introduced spaces C = C°@® C!. The boundary operator 8 in C is
given by '

0z, = 0, e =2 —Ti

The definition is extended to arbitrary chains by linearity.

Multiplying the basis elements z.,e. in various way we obtain basis elements of
C(4). If cp,cq are chains of the indicated dimension, belonging to the complexes being
multiplied, then

0(cp ® cq) = Ocp ® cq + (—1)Pcp @ Ocy. (11)

Relation (11) defines the boundary operator in C(4) .
We suppose that the combinatorial model of Minkowski space has the same structure
as C(4). We denote only the basis elements corresponding to the time coordinate of
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M* by Z., &.. So, for example, the 1-dimensional basis elements of C(4) can be
written as

1 i S
er = €k, O Tk, @ Thy @ Tky, er = Tk, ® ek, @ Tiy @ Ty,
3

Lo -]

€} = Tk, @ Tk, @ €k, ®Thyy, € = Tk, @ Tk, @ Thy ® €k, (12)

where k = (k1, kz,ka,k4) is multiindex, kj ed;3=1,2,3,4.

Let us now consider a dual complex to C(4) . We define its as the complex of cochains
K(4) with coefficients belonging to su(2) The complex K(4) has a similar structure,
namely K(4) = K® K ® K ® K, where K is a dual complex to the 1-dimensional
complex C. Basis elements of K can be written as {z*},{e*}. Then an arbitrary
basis element of K (4) is given by s* = 3% ® s*2 @ sk* ® s*4 | where s*i is either z*s
or eFi .

As in [2], we define the pairing operation for arbitrary basis elements ¢; € C(4),
sk € K(4) by the rule

0, ek # sk

k
< £k, as® >=
k {a, €k = Sk, @ € su(2).

(13)

The operation (13) is linearly extended to cochains. We will call cochains forms,
emphasizing their relationship with the corresponding continual objects, differential
forms.

The coboundary operator d°¢ is defined by
< Oex,as® >=< gi, ad’s* > . (14)

The operator d° is an analog of the exterior differentiation operator.

Let us now introduce in K (4) a multiplication which is an analog of the exterior
multiplication for differential forms. First we introduce the r-dimensional complex
K(r), r=1,2,3, in an obvious notation. Let s’(‘p) be an arbitrary p-dimensional basis
element of K (), i.. the following product sf, = 5" ®...® s* contains exactly p of

the 1-dimensional basis elements e*5 and r—p of the 0-dimensional basis elements z*i ,
kj €Z, j=1,..r. It should be noted that the whole requisite information about the
number and situation of ”components” is contained in the symbol (p) . Then, supposing
that the U -multiplication in K (r) has been defined, we introduce it for basis elements
of K(r +1) by the rule

(sfp) ®s")U (sfq) ® s*) = Q(k, q)(s{‘p) U sfq)) ® (s" U sh), (15)

where s’&),sfq) € K(r), s*(s*) is either z*(z#) or e*(e*), k,u € Z, and the signum
function Q(k,q) is equal to —1 if the dimension of both elements s*, sfq) is odd and

to +1 otherwise (see [1]). For the basis elements of K the U-multiplication is defined
as follows

e UgF=g% U =¢f o lief=e" xel,

supposing the product to be zero in all other case. To arbitrary forms the U -multipli-
cation can be extended linearly. Coefficients of forms multiply as matrices.
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PROPOSITION 1. Let ¢ and 9 be arbitrary forms of K(4). Then
d°(pU) =dp U+ (~1)Pp U dy, (16)

where p is the dimension of a form .

The proof of Proposition 1 is totally analogous to one in [1, p.147] for the case of
discrete forms with real coefficients. O

By definition, the coboundary operator d° and the U-multiplication do not depend
on a metric. So they have the same structure in K(4) as in the case of the combinatorial
Euclidean space [5]. At the same time, to define a discrete analog of the operation
we must take into account the structure of the Lorentz metric on K (4). In this case
it is convenient to write the basis elements of the complex K(4) in the form i* ® s*,
where s* is a basis element of K(3) and ji* is either z* or &*, k€ Z.

Then we define the operation * as follows

B @ s*Ux(i" ®s*) = Q(u)e" @ e @ ek @ e, (17)

where Q(p) is equal to +1 if 5* =z~ and to —1 if g* =é".
Relation (17) describes the structure of the Lorentz metric in the discrete model (see
[7)-

4. Discrete Yang-Mills equations.

The discrete analog of the connection 1-form (2) can be written as

4

A=) Alek, (18)

=1 k

where e? is the 1-dimensional basis element of K (4) and Aﬁ‘;e su(2), k=(k1, k2, k3, k4),
ki€Z.
Consider the discrete form

h=Y " hia*, (19)
k

where z* is the O-dimensional basis element of K(4) and ki € SU(2). Note that
the O-form (19) does not belong to the complex K(4). But, since zF € K(4), the
U-multiplication and the coboundary operator d° are generalized on the forms (19) in
an obvious way. :
Then the discrete analog of the gauge transformation (3), (4) can be written as

g =hUg, A =hUdh~'+hUAURL, (20)
where h,h~!,g are forms of the type (19). Here we denote by A~! the form whose
coefficients (matrices) are inverse to coefficients of h. If e is the O-form (19) all of
whose coefficients are unit elements of the group SU(2), then we have

hUR'=h"lUh=C¢.
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It should be noted that the 0-forms defined by (19) generate a group by respect to the
U -multiplication.
Given the discrete analog of the 1-form (1) by the formula

w=g"tudg+g"UAUyg,

it is easy to proof that w is invariant (w = w’) under the transformation (20) (see [5]).

Now consider the 2-form .

Fiey > ik (21)

j=1 k

where Fg € su(2) and s;? is the 2-dimensional basis element of K(4). The 2-
dimensional basis elements of K(4) can be written as follows

¥ =k @ k2 @ zF2 @ 24, ef =" @z* ® e @ 4,
s§=ék‘®xk2®mk3®ek“, si’:a’:’“@ek?@ek"@mk‘,
ef=ith it edd, d=ihrer"2ee gk,

where k; €Z, 1=1,2,3,4.
We define the discrete analog of the curvature 2-form by the formula

F=dA+AUA. | (22)

PROPOSITION 2. Under the gauge transformation (20) the curvature form (22) changes
as

F'=hUFURL

Proof. The proof closely follows the proof Theorem 2 of [5]. Using (20) and (16) we
compute

d°A' =d°hUd°h™ ! +d°hUAUR™ Y+ hUd°AUR™ —hU AUd°h™1.
Since d°e = 0 by definition of d°, we have
d°(hUh™) =d°hUR™ + hUdA™! =0

and so
d°hU R~ = —hud°h™1. (23)

Taking into account (23), we obtain

AUA =(RUdrP+hUAURY)U(RUdR '+ RUAUR™Y)
= —dhUdh" '+ hUAUdh ' —d°hUAUR 1+ hUAUAURL.

Then we finally have
Fl=d°A+AUA =hUd°’AUR" ' +hRUAUAU h-ll:l
=hU(d°A+ AU A)UR™L.
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From the definition (22) one easily derives that the curvature form F satisfies the
identity
dF+AUF-FUA=0. (24)

The comparison of (24) with (7) yields a discrete analog of the Bianchi identity. Define
now the discrete analog of the exterior covariant differentiation operator by setting

cQ=dQ+ AUQ+ (-1)"TQU 4,
where Q is an arbitrary r-form of K(4). Then Identity (24) can be rewritten as
“F = 0.
In similar manner, we obtain the discrete analog of Equation (8)
d4*F=d°*F+AUxF —-xFUA=0. - (25)

Let 7i; (o0i5), 4,5 =1,2,3,4, i # j, be the shift operator acting as the operator
(o) by the i-th, j-th components of the multiindex k = (ky, k2, k3, k4) . For example,

Tiok = (Tk1, Tha, k3, ka), o023k = (k1, oka, 0ks, ka).
Using the definition (17) we compute

o § : 6 k 5 k 4 k 3 k 2 k 1 k
*F = (Fdsqkel 3 Fo‘z4k€2 = F023k53 B F014k€4 + F613k€5 - Fo‘1gk€6)' (26)
k

LEMMA 1. Let h be a discrete 0-form. Then we have
*(hUf) = hUf 27)

for an arbitrary p -form f € K(4).
Proof. Any p-form f € K(4) can be expressed as

Fe= Zflgp)s?p)’
)

where f,Ep ) € su(2) and s’&,} is the p-dimensional basis element of K(4) . By definition,
we have z* U s = sf, for an arbitrary 0-dimensional basis element zk of K(4).

Hence,
hUS = (Z h) U (Z fé"’sfp)) =2 mfPsly.
k : k k

Then we obtain

s(hUf) =Y hefP xsl,y =hUY fFP xsk) =hUsf. O
k k
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LEMMA 2. We have

*(fUh)=xfUh (28)
for an arbitrary 2-form f € K(4) if and only if coefficients of a 0-form h satisfy the
following conditions

hi = ha‘jk (29)

for all 4,7 =1,2,8,4.4 £
Proof. From the definition (15) one easily derives that in the form fUh two indices in
the coefficients hj are shifted and we have

fUR= E(fklzhnzke’lc iz f!ghﬂsksg + fl?hi'uksg + flghfzske’i + ffhmkeg + f}?hfs4k5§)'

k
Since
xek = -1k, *ek = g3k, xe§ = —ePeF
vk =Pk, k= —epth, ek =k,
we obtain

*(f U h’) = Z(_féhrukegnk o flghngke?ak = f]:csh‘rukszuk
k

k k k
+f:h‘!‘23k513-23 - fgh‘!'mk‘g;% + ffh-,—uké';“ ) (30)

Taking into account the relation
S et = ™
k k

we compute
sfUh = (= fhhieg®® + fPhoief* — fihoeg®
k

+ fEne?* — fEh kel ® + fER eTHk), (31)

where 7k = (7k1, Tke, Tk3, Tkq) .
Inserting (30), (31) into (28), we get

hrk = Rrzk = Brygk = Brygk = Rrggk = Brpgk = hrggk

for an arbitrary k. Clearly, these relations imply (29).

On other hand, Conditions (29) we can rewritten as follows hrx = h,x for all
i,j = 1,2,3,4, i # j. Substituting the latter into (30) and comparing (30) and (31),
we obtain (28). O

It should be noted that in the Lemmas we can taken the O-form h either as an
element of K(4) or as a form of the type (19).

Conditions (29) mean that the ”diagonal components” of the 0-form h are equal
in all plans. Remind that we regard h as the function over the points z; and
hlz, =< zg, h >= hy .

204



PROPOSITION 3. The set of 0-forms (19) satisfying Conditions (29) is a group under

U -multiplication.

Proof. The claim is obvious. By the definition (15), the product of any O-forms is a

0-form and indices in coefficients do not shift. From this the result follows at once. O

THEOREM 1. Under Conditions (29) the Yang-Mills equation (25) is gauge invariant.
Here gauge invariance is understood as follows. If A(F') is a solution of Equation

(25), then A’(F’) is also a solution of (25).

Proof. By Proposition 3, the form h~! satisfies Conditions (29). Using Proposition 2

from Lemma 1 and 2 we have

xF' = hUxFUh™L
Now express d$, * F’ in terms of F, A. Applying (16) we compute
d°*F' =d°hUxFUR™ '+ hud°* FUR ' + hUxFUd°h™L.

Taking into account (20) and (23), we obtain

A'UxF'= —d°hUxFUR™ ' + hUAU*FUR™!
and

*F'UA' = hUxFUdR" '+ hUxFUAUR™L
Thus, |

o *F =hudy*FUuh™t. O

5. The formally adjoint operator of d5 .

Let V C C(4) be some fixed "domain” of the complex C(4). We can written V as
follows
V=YV k=(k,ks,ks, k), ki=12..,N, - (32)
k

where Vi = &, ® ek, ® ek, ® e, is the 4-dimensional basis element of C(4). We
agree that in what follows the subscripts k;, i = 1,2,3,4, always run the set of values
indicated in (32). In this section we suppose that coefficients of the discrete forms are
vanished on C(4) \ V. Then the "inner product” for forms &,V € K(4) of the same
degree is defined by the relation

(2, W)y =~tr <V, 2U =¥ > . (33)

For the forms of different degrees the product (33) is set equal to zero.

The definition imitates correctly the continual case (Relation (9)). It follows from
(17) that for the basis elements ef and e¥ we have ef Uxek = —V¥, ek Uxef =V*
for i =2,3,4, efUxef=-V* for j=1,2,3 and ebUxef =V* for j =4,56.
Then we obtain

(4, A)y = —tr Y [-(40)" + (40)° + (4%)* + (4})7]
k
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and

(F,F)y = —trY_ [-(F})? - (F2)? = (F)? + (F&? + (F2)* + (F§)?,
k

where A is an 1-form (18) and F is a 2-form (21).
PROPOSITION 4. Let & € K(4) be an 1-form and ¥ € K(4) be a 2-form. Then we
have '

(d°®,0)y = (®,6)y,
where .
| U = x"1d°x ¥ (34)
is the formally adjoint operator of d°.
Proof. From (16) and (33) we obtain
(d°®,¥)y = —tr < V,d°®@ U *¥) >

=—tr < V,d(QUx¥) > —tr < V,®oUd** ¥ >

= —tr <V, QU V¥ > —tr < V, @ U (x"1d°x ¥) >

=—tr <OV, U¥ > +(®, « 1d° x ¥)y,

where we used **~1=1.

Let &, j = 1,2,3,4, denote the 3-dimensional basis element of C(4). Using (11) we
derive that

i ~1 ~1 ~2 ~2
oy = Z(eankz,ka.h €1,k ,ks ks~ €ky,7N2,ks,ka + €k1,1,k3,kq
k

~3 ~3 ~4 ~4
+ek1 Jk2,7N3, kg — ek1 Jka, kg ek‘l yko,ks, TNy + ek1 ,kz,ks,l)'!
where
B =2 T o=
€ = Tk, ® ek, Q ex, ® ex,, €r = €k, Q Tk, Q ey, @ eg,,
-3 =5 -4 s
€ = €k, ek, @ Tk, @ ey, €r = €k, e, ex, @ T,

Computing the "boundary components” of the form & U*¥ we obtain the linear com-
bination of the following products:

r b T o -
Q‘;cl---'rNi"-ké " Fk1...Ni..kg? (I)k1...0...k4 ’ lI‘ic;...l)...lc.;:! ,7=1,2,3,4, r=1,2,...,6.

Since we have @{1_._,&_‘_& =% 0.k =0 forall ¢, j,r by assumption, it follows that
<V, 2Ux¥ >=0. O

For the 2-form F using (26) and the definition of d® we can rewritten (34) in the
form '

0°F = Z[(Akz Fcfzk + Aks FO2‘3k + Ak4F34k)e’f
k

+ (A Fy + Ar Fo g + D, Fo 1 )es
+ (Aleoz'lk = Akngzk + Ak4F:4k)e§
+ (Ak F2p — Dk, Fopp — Dk FO 1 )ek].
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Here we denote by Ag, Fg the difference F,f‘_k—Fg, i=12,.,6, and 7k = ky..7k;...k4,

O';k = k]_..O‘k,‘..k‘; ) = 1, 2, 3, 4.

LEMMA 3. For any 1-form ® € K(4) and 3-form ¥ € K(4) the following relation

holds _
tr<V,2UV¥ >=—-tr<V,¥Uxx® >. (35)

Proof. The forms & and ¥ can be expressed as
4 . 4 .
B I LRSS D)
i=1 k i=1 k

where @i, Ui € su(2) and éF is the 3-dimensional basis element of K (4).
Using (13), (15) we compute

tr<V¢U‘I’>—trZ(<I> TR -2 02 4 83 U -8t T,

where o;k = (k1...0k;...ks) .
On the other hand, since

sx P = ZZQ;e;’", 7k = (7ky, Tk, Tk, Tka), (36)
=1 k

we have

tr<V,¥Ux*x®>=try (-0} 8L, +0} -2, — 03 &3, + Tt %)
k.

— trZ(_@:“lk g q‘i & ngk & T% - (I’g‘sk = ‘I’i 5 Q‘:Mk : wg)’
k

where we used tr(®% - i) = tr(¥i - ®%). From this the result follows at once. O
It should be noted that in the continual case we have the equality

tr(p AY) = (=1)*%r(p A g),

where ¢ and 9 are matrix-valued differential forms of degree p,q, respectively. Un-
fortunately, this equality has not an exact analog in our formalism.

THEOREM 2. For any 2-form F € K(4) the formally adjoint operator of d5 acts as
follows

0GF =+ 1(d*+ F —xFUx*x A+ AUF). (37)
Proof. We will compute the operator J§ defined by the relation

(d4®, F)v = (®,04F)v,
where @ is an 1-form.
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Using (35) and (33) we have
(d4®, Fl)v = —tr <V, d3®@ UxF >
=—tr <V, d®@UxF > —tr <V, (AURU*F +®UAUx*F) >
=—tr <V, d®@UsF > +tr <V, (BUxFU*xA—-3UAU%F) >
=(d®, F)y +tr<V, (Uxx"t(xFU**A)—dUx*+"1 (AUxF)) >
=(®, 6°F)y — (&, s 1 (xFUxx A))y + (&, + H(AU*F))y
=(®, 6°F —x"1(xFUxx A+ 1(AUxF))y. O
In the continual case, if we choose the Lorentz metric,-then
wE A =4

for an arbitrary differential 1-form A.
Hence the Yang-Mills equation (8) can be rewritten as follows

dxF+AN+F —xFAxx A= 0. : (38)
It follows that a discrete analog of Equation (38) (or (8)) can be given by
CxF=d*F+AUsF —+FU%xA=0. (39)

Comparing the latter and (37) we obtain
04F = x71dS « F.
Thus, if the discrete curvature 2-form F is a solution of Equation (39), then the Laplace
type equation
(d5%65 +65d4)F =0
holds immediately. This equation we call a discrete analog of Equation (10).
It should be noted that in our discrete model the operation *% = ** is equivalent to

a shift with corresponding sign (see (36)). So, unfortunately, Equation (39) differs from
Equation (25). The possibility of involute (xx =1) definition of * is discussed in [6].
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